Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available November 16, 2026
- 
            Free, publicly-accessible full text available September 23, 2026
- 
            This paper focuses on COSMOS ś Cloud enhanced Open Software defined MObile wireless testbed for city-Scale deployment. The COSMOS testbed is being deployed in West Harlem (New York City) as part of the NSF Platforms for Advanced Wireless Research (PAWR) program. It will enable researchers to explore the technology łsweet spotž of ultra-high bandwidth and ultra-low latency in the most demanding real-world environment. We describe the testbed’s architecture, the design and deployment challenges, and the experience gained during the design and pilot deployment. Specifically, we describe COSMOS’ computing and network architectures, the critical building blocks, and its programmability at different layers. The building blocks include software-defined radios, 28 GHz millimeter-wave phased array modules, optical transport network, core and edge cloud, and control and management software. We describe COSMOS’ deployment phases in a dense urban environment, the research areas that could be studied in the testbed, and specific example experiments. Finally, we discuss our experience with using COSMOS as an educational tool.more » « less
- 
            Flipped instruction is being implemented in an increasing number of mathematics classes but the research base is not yet well developed. Many studies of flipped instruction involve a small number of flipped classes being compared to non-flipped classes, but this methodology fails to account for variations in implementations. To aid in the systematic attention to variation, this article presents a framework for flipped mathematics instruction that identifies key features of the videos assigned as homework as well as features of the in-class activities. The components of the framework are accompanied by proposed quality indicators to further distinguish between flipped implementations that are structurally similar but different in enactmentmore » « less
- 
            In order to support experimentation with full-duplex (FD) wireless, we integrated the FlexICoN Gen-2 wideband FD radio with the city-scale PAWR COSMOS testbed [1]. In particular, the implemented FD radio consists of an antenna, a customized Gen-2 RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a compute node. The RF canceller box includes an RF SI canceller implemented using discrete components on a printed circuit board (PCB), which emulates its RFIC canceller counterpart. The Gen-2 RF SI canceller achieves 50 dB RF SI cancellation across 20 MHz bandwidth using the technique of frequency-domain equalization (FDE) [2]. In this abstract, we present the design and implementation of the remotely accessible Gen-2 wideband FD radio integrated with the COSMOS sandbox at Columbia University. We also present an example real-time wideband FD wireless link demonstration using the GNU Radio software.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available